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Abstract. This paper introduces a new approach to add fault-tolerance to a 
fulltext retrieval system. The weighted pattern morphing technique circumvents 
some of the disadvantages of the widely used edit distance measure and can 
serve as a front end to almost any fast non fault-tolerant search engine. The 
technique enables approximate searches by carefully generating a set of 
modified patterns (morphs) from the original user pattern and by searching for 
promising members of this set by a non fault-tolerant search backend. 
Morphing is done by recursively applying so called submorphs, driven by a 
penalty weight matrix. The algorithm can handle phonetic similarities that often 
occur in multilingual scientific encyclopedias as well as normal typing errors 
such as omission or swapping of letters. We demonstrate the process of filtering 
out less promising morphs. We also show how results from approximate search 
experiments carried out on a huge encyclopedic text corpus were used to 
determine reasonable parameter settings. 
A commercial pharmaceutic CD-ROM encyclopedia, a dermatological online 
encyclopedia and an online e-Learning system use an implementation of the 
presented approach and thus prove its “road capability”. 

1   Introduction 

One of the main advantages of digitally stored texts is the possibility to easily retrieve 
information from their content. In written texts there is always the possibility of errors 
and ambiguities concerning their content. Particularly large scientific encyclopedias, 
though they may have passed a thorough scrutiny, often use more than one spelling 
for the same scientific term.  

Publishers of encyclopedias and dictionaries are often confronted with a problem 
when a large number of contributing authors produce the text content. These authors 
tend to use synonymous notations for the same specific term. This might seem of 
minor importance to the user of a printed edition. The user of an electronic version, 
however, might be misled by the fact that a retrieval produced results. The user might 
have had more results when searching for a different spelling of the search term (e.g., 
different hyphenation, usage of abbreviations, multilingual terms). 
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Since 1999 our chair of computer-science has cooperated with Springer-Verlag, a 
well-known scientific publishing company, to compile the annual electronic version 
of Hagers Handbuch der Pharmazeutischen Praxis (Hager's Handbook of 
Pharmaceutic Practice)  [1], the standard encyclopedia for German speaking 
pharmacists and pharmacologists. The printed version of “Hager's Handbook” 
consists of twelve volumes with about 12,300 pages. The first part (five volumes) 
describes active substances drawn from plants (herbal drugs), and the second (five 
volumes) is about synthetically produced agents (drugs). The two last volumes 
contain the manually generated index. 

The first electronic version was released as HagerROM 2001 at the end of 2000, 

and the current 3rd release was in June 2003 as HagerROM 2003  [2]. To make the 
vast amount of Hager's information accessible to the end-user, a fast q-gram based 
fulltext retrieval system, which is briefly described in section  2, was built into 
HagerROM. 

 
For a better understanding of the decisions we made during the development of the 
text retrieval system, some key data regarding HagerROM follows: 
– The first edition was published by Mr. Hager in 1876 
– 600 contributing authors wrote the current fifth edition (1995–2000) in 
– 6,100 separate articles, which led to 
– 121 MB of XML tagged text, which, in turn, lead to 
– 157 MB of HTML tagged text in 
– 16,584 HTML files, which resulted in 
– 53 MB raw text T (after removing layout tags) with 
– >160 symbol long alphabet ∑ (after lowercasing T) 

 
We soon were confronted with the need for making the text retrieval fault-tolerant, 
owing to the following characteristics of Hager: The two expert-generated index 
volumes of the print edition list about 111,000 different technical terms drawn 
manually from the Hager text corpus. These entries were used in the articles by the 
large number of contributing authors and consist of German, Latin and English terms 
– making text retrieval a multilingual problem. 

For example “Kalzium” (Ger.) has 42 occurrences and “Calcium” (Lat.) has 
about 3750 occurrences in text T. So, whatever word variant a user feeds into a non 
fault-tolerant search algorithm, not all usages of the technical term will be found. 
Additionally spelling and typing errors are a problem in such a large text corpus. For 
example the word “Kronblätter” (crown leaves), with about 600 hits, was once 
typed wrong as “Kronbläter” and occurs once correctly as a slightly changed 
substring of “kronblättrig” (crown petaled). Empirical studies by Kukich [3] 
have shown that the percentage of mistakes in texts is not negligible. More precisely, 
she found that texts contain 1%–3.3% typing errors and 1.5%–2.5% spelling errors. 

This paper is organized as follows: In section  2 we first give an overview of 
previous work, describe our non fault-tolerant search backend, and summarize other 
existing fault-tolerant approaches. In section  3 we introduce the algorithm of 
weighted pattern morphing and provide the rationale for the parameter choices used in 
the design of the algorithm. Section  4 then shows the results of some retrieval 
experiments we carried out on the text corpus of HagerROM, to give an idea of the 
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average running time of the algorithm. Finally, section  5 presents conclusions and 
ideas of future work. 

2   Previous Research  

Fast search algorithms store their knowledge of a text in an appropriate index, 
commonly implemented using one of the following data structures (see  [4]): suffix 
tree, suffix array, qgrams or qsamples (Sometimes authors refer to q-grams and q-
samples as n-grams and n-samples respectively). 

2.1   Our Non Fault-Tolerant Search Backend 

The non fault-tolerant variant of our search engine uses a compressed q-gram index. 
When this index is created, the position (offset from first symbol in T) of every 
substring Q with length q inside text T is stored in an appropriate index (see  [5] for 
details). 

As the position of every substring of length q is stored in the index, this leads to 
quite large index sizes, which is seen as the main disadvantage of this indexing 
technique (see  [4],  [6]). On the other hand storage space is nowadays often a 
negligible factor, and so one can benefit from the enormous retrieval speed q-gram 
indices provide. 

In the field of fault-tolerant information retrieval, vectors of q-grams are 
sometimes used to calculate the spelling distance of two given strings (see Ukkonen's 
q-gram distance measure  [7]). But as this technique is rather oriented towards 
spelling and not towards sound we use weighted pattern morphing (WPM) for 
approximate matching. For our approach the q-gram index serves as an 
(exchangeable) exact, non-approximate search backend, where other data structures 
like suffix tree or a word index would also be feasible. In our case, q-grams are a 
good choice, as they are very fast in detecting that a special pattern is not part of the 
text: e.g., if any of the q-grams contained in the search pattern is not part of the q-
gram index the algorithm can terminate – there are no occurrences of the pattern 
inside the text. This is useful, as many patterns that WPM generates may not be part 
of the text. 

It is obvious that the size of the above mentioned offset lists is independent of q, as 
the position of the Q window always increases by one. Further, with increased values 
of q, the average length of the offset lists drops, while the total number of these lists 
raises, and so does the required storage space for the managing meta structure for the 
index. 

To get reasonable retrieval performance, values of q≥3 are mandatory to avoid 
processing long offset lists during a search. However, when only an index for q≥i is 
generated, search patterns P with |P|<i cannot be found in acceptable time. 
Consequently, indices for more than one q are needed, which leads to even more 
storage space requirements for the total index structure. (Note: |X| denotes the length 
of string X in characters). 
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Instead of saving storage space by using q-samples, which are non-overlapping q-
grams (i.e., every hth q-gram, h ≥ q, is stored in the index), we use normal, overlapping 
q-grams with q={1,2,3,4}. For an approximate search approach with q-samples 
see [6]. But to save space, we skip every 3- and 4-gram Q where at least one character 
of Q is not among the f most frequent unograms (i.e., 1-gram) of the text, so called 
favorites.  

So while the unogram and duogram index is complete, we skip every occurrence 
of, for example, 17_°, 7_°C and _°C_ (where '_' denotes 'space'), while we store every 
position of, for example, _rat, rats and ats_. 

This technique turned out to be extremely flexible for the process of tuning our 
search engine to maximum speed by filling up the available storage space (e.g., of the 
distributed CD-ROM) with more and more 3- and 4-grams in our index structure. 

Though the storage of unograms might seem obsolete, when duograms are present, 
unograms are necessary for two reasons: First, retrieval of seldom used symbols like a 
Greek 'δ' might be important to the end-user, as even this single symbol carries 
enough information content to be interesting. Second, our fault-tolerant add-on (see 
section  3) may modify user patterns using '?' wildcards, leaving unograms close to 
the borders of the new pattern. 

2.2   Common Techniques for Fault-Tolerant Fulltext Retrieval 

In 1918 Robert C. Russell obtained a patent for his Soundex algorithm  [8], where 
every word of a given list was transformed in a phonetic, sound-based code. Using 
this Soundex code, U.S. census could look up surnames of citizens rather by sound 
instead of spelling, e.g., Shmied and Smith both have the Soundex code S530. 
Unfortunately Soundex too often gives the same code for two completely different 
words: catherine and cotroneo result in C365 and similar sounding words get different 
codes: night=N230 and knight=K523. 

Although there have been many improved successors to this technique (e.g.,  [9] 
and  [10]), all of them are word based and thus lack the ability to find patterns at 
arbitrary positions inside a text (e.g., pattern is substring of a word inside the text). 
Further, with sound code based systems it is impossible to rank strings that have the 
same code: strings are either similar (same code) or not (different code). Last, 
phonetic codes are usually truncated at a special word length, which make them less 
usable in texts with long scientific terms. 

In [4] a taxonomy for approximate text searching is specified. According to this 
taxonomy, three major classes of approaches are known: neighborhood generation, 
partitioning into exact search and intermediate partitioning. 

Neighborhood generationn generates all patterns P' ∈ Uk(P) that exist in the text, 
where editdistance(P, P') ≤ k for a given k (for a description of edit distance see 
below). These neighbor patterns are then searched with a normal, exact search 
algorithm. This approach works best with suffix trees and suffix arrays but suffers 
from the fact that Uk(P) can become quite large for long patterns P and greater values 
of k. 

Partitioning into exact searchcarefully selects parts of the given pattern that have 
to appear unaltered in the text, then searches for these pattern parts with a normal, 
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exact search algorithm and finally checks whether the surrounding parts of the text are 
close enough to the original pattern parts. 

Intermediate partitioning, as the name implies, is located between the other two 
approach classes. First, parts of the pattern are extracted, and neighborhood 
generation is applied to these small pieces. Because these pieces are much smaller and 
may have fewer errors than the whole pattern, their neighborhood is also much 
smaller. Then exact searching is performed on the generated pattern pieces and 
checked to see whether the surrounding text forms a search hit. 

Various approaches have been developed to combine the speed and flexibility of q-
gram indices with fault-tolerance. Owing to the structure of q-gram indices, a direct 
neighborhood generation is not possible in reasonable time. Jokinen and Ukkonen 
present in [11], how an approximate search with a q-gram index structure can be 
realized with partitioning into exact search. Navarro and Baeza-Yates in  [5] use the 
same basic approach, but assume the error to occur in the pattern, while Jokinen and 
Ukkonen presume the error to be in the text, which leads to different algorithms. 
Myers demonstrates in  [12] an intermediate partitioning approach to the approximate 
search problem on a q-gram index. 

All the above methods are based on the definition of one of the two string 
similarity metrics published by Levenshtein in [13] called Levenshtein distance and 
edit distance. Both metrics calculate the distance between two strings by summing up 
the minimal costs of transforming one string into the other by counting the atomic 
actions insert, delete and substitute of single symbols  [14]. 

Though these metrics provide a mathematically well-defined measure for string 
similarities, they also suffer from the inability to model similarity of natural language 
fragments satisfactorily, from a human point of view. 

With regard to the special characteristics of the Hager text corpus, the use of the 
edit distance measure did not seem appropriate. This is mainly due to the fact that the 
edit distance processes only single letters (regardless of any context information) and 
does not provide the means of preferring a string substitution A→B versus A→C, 
where |A|≥1, |B|≥1 and |C|≥1 and |A|, |B| and |C| are arbitrarily different. 

For example: 
editdistance(“kalzium”, “calcium”)=2 and  
editdistance(“kalzium”, “tallium”)=2, are the same – despite the fact that 
every human reader would rate the similarity of first two strings much higher than the 
similarity of the second pair of strings. 

Because the edit distance is more suited to model random typing mistakes or 
transmission errors, we needed a way to approximate patterns where the differences 
between text and pattern are less “random” but more due to the fact that a great 
number of authors may use the same scientific term in different (but correct) 
spellings. We also wanted to cope with the problem of non-experts knowing how a 
scientific term sounds, without exactly knowing the correct spelling. Our technique of 
weighted pattern morphing is described in the next section. 
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3   Weighted Pattern Morphing  

In this section we present the architecture and algorithms of our fault-tolerant 
frontend, which is based on the weighted pattern morphing approach. Afterwards we 
show the results of experiments that led to reasonable parameter settings for our fault-
tolerant search engine. 

 

 

Fig. 1. Workflow of weighted pattern morphing frontend and search backend 

3.1   The Fault-Tolerant Search Frontend 

As stated at the end of the previous section the edit distance metric, which is used by 
most available approximate text retrieval algorithms, is not appropriate, when one is 
trying to model a more human-oriented string similarity. Weighted pattern morphing 
(WPM) overcomes the mentioned disadvantages with a simple but powerful idea: 

Browse searchpattern P for all substrings pi,j (1≤i≤j≤|P|), which are part of a 

phoneme group G with G={g1,g2,...,gz} and where pi,j=gk (1≤k≤z) and try to replace 

pi,j by all gl (l≠k) which are members of the same phoneme group G. More general as 

with the edit distance, here |pi,j| ≥ 1, |gl| ≥ 1 and even |pi,j|≠|gl| is possible. A pattern 

P', where at least one substitution took place is called a morph of P and a single 
substitution of pi,j to gl is called submorph pi,j→gl. 

As the interchangeability of members of the same phoneme group should be 
different, the concept of penalty weights was introduced. These penalty weights were 
stored in two-dimensional submorph matrices with source strings gk in rows and 

destination strings gl in columns (see examples in table 1). 

As the table demonstrates, not every possible submorph is allowed, and the matrix 
may be asymmetric to the diagonal. There exist submorph tables for every common 
phoneme group like “a/ah/aa/ar”, “i/ie/y/ih/ii”, “g/j”, “c/g/k/cc/ck/kk/ch”, and so on. 
The possibilities of the edit distance can be approximated by submorphs like ε → ”?” 
(insert any char), c∈Σ → ”?” (substitute a char c), c∈Σ→ε (delete), where ε is the 
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empty word, Σ the alphabet and “?” is the one-letter wildcard for our search engine. 
But even more exotic submorphs like solution → sol., acid → ac., 5 
→ five are defined. These are often helpful in a biochemical and medical contexts, 
because abbreviations are used inconsistently by different authors (e.g, in HagerROM 
the terms “5-petaled” and “five-petaled” occur). 

Table  1. Two example penalty weight matrices (phoneme group “cgk...”; numbers) 

c g k … 1 one 2 … 

c – – 1 … one 1 – – … 

g 10 – 10 1 – 1 –  

k 1 15 – two – – 1  

… …   … …  

 
For the German language mixed with Greek and Latin terms we manually 

identified about 25 different phoneme groups that lead to about 350 submorphs. The 
penalty weights for these string pairs were adjusted manually from a native speaker's 
point of view. Automatically adjusting the weights is subject to ongoing research, and 
our early results seem quite promising. For generation of English morph matrices we 
relied on linguistic research publications like e.g., Mark Rosenfelder's “Hou tu 
pranownse Inglish”  [15]. Though Rosenfelder presents rules to get from spelling to 
sound, we used his work to identify about 35 English sound groups and their possible 
spelling which lead to English morph matrices with about 900 submorphs. Additional 
submorphs for number names and numbers (100→hundred, hundred→100) and 
domain specific abbreviations were added afterwards. 

Every morphed pattern P' is recursively fed into the same morph algorithm, to 
perform even more submorphs. To avoid recursion loops, the first index imin where 

submorphs pi,j→gl may start, is always increased for deeper recursion levels. Loops 

otherwise may appear through submorphs at different recursion levels like u→v, 
v→w, w→u. On every recursion level, P is also fed unaltered into the next recursion, 
with only imin increased, to also allow submorphs only towards the end of the pattern. 

Because the recursion tree can get large, the total penalty S, as sum of the penalty 
weights for all applied submorphs, and M, the total number of applied submorphs 
(=recursion depth), are updated for every recursion call. Recursion backtracking is 
performed when either S or M pass configurable limits Smax, Mmax or when imin > 

|P|. As Smax, Mmax and imin grow with every recursion level, the algorithm 

terminates in reasonable time (see section  4). 
Obviously, the above algorithm generates many morphs that are not part of the text 

corpus. Though the q-gram algorithm is very fast in finding out that a pattern has no 
hits in the text (this is so, because the search always starts with the shortest q-gram 
offset list, see  [16]), pre-filtering of “useless morphs” was achieved by the 
introduction of the hexagram filter. 
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This hexagram filter possesses a trie structure with a maximum depth of six, but 
does not store actual offsets of hexagrams. It simply indicates whether a specific q-
gram class (q≤6) exists in the text at all. 

So when a morph P' is generated, the hexagram trie is traversed for every (2nd 
overlapping) hexagram that is part of P'. If any of the morph's hexagrams is not part 
of the trie, P' as a whole cannot be part of text T and is discarded. However, if all the 
hexagrams of P' are part of the trie, there is no guarantee that P' occurs in T, because 
all hexagrams are part of T, though not necessarily in the same order as in P'. In these 
cases we rely on the ability of the q-gram algorithm to terminate quickly for those 
patterns that are not part of the text. 

When checking the q-grams of P' against the trie structure, there are two 
parameters that influence the accuracy of the filter: trie depth TD (we used a depth of 
six) and window delta WD of the hexagrams drawn from P'. The window delta states 
whether every hexagram of P' is taken (delta=1) or every second hexagram (delta=2) 
and so on. Smaller values of trie depth and larger values of window delta increase 
filter speed but reduce accuracy – and thus result in more promising morph 
candidates, which results in longer overall time for the algorithm. 

 

 

 
Fig. 2. Operating time for different accuracy levels of the trie filter 

So, to obtain reasonable values for these two parameters, we executed fault-
tolerant searches with about 14,000 patterns drawn from the text and recorded the 
average running times for different values of trie depth TD and window delta WD. 
These experiments were performed on an Intel®  Pentium® IV 2.6 GHz processor 
with 512MB of RAM, and the results are shown in figure  2. We observed a minimum 
running time at TD = 6 and WD = 2, which is the reason why we chose these values 
for all subsequent experiments. Though these results seems portable to other Indo-
European languages, it is a topic for future research whether the above values of TD 
and WD are appropriate for other text corpora, too. 

 
Every time a submorph is applied, the resulting morph P* (if it has passed the 

hexagram filter) is stored in a hashmap, together with SP*, its sum of penalty weights. 

When the WPM algorithm terminates, the list of generated morphs is sorted in 
ascending order by SP*. The best B morphs (those with least penalty weights) are 
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then kept as the final morph list of the original pattern P. The limit B is configurable. 
Each triple of values Smax, Mmax and B defines a fault-tolerance level. 

3.2   Experiments to Determine Reasonable Parameter Settings 

As stated in the previous subsection, the degree of fault-tolerance of the weighted 
pattern morphing algorithm can be controlled by 3 parameters: 
1. Smaxthe maximum sum of penalty weights a morph may aggregate, 

2. Mmaxthe maximum number of submorphs a morph may accumulate, and 

3. Bthe number of best rated morphs that is fed into the search backend. 
 

The patterns an end-user presents to the search-engine remain an unknown factor, 
therefore we chose the following procedure to gain test patterns for our experiments: 
We first split up the whole text T into all of its words. As word delimiter d we chose 
(in perl notation): 

d ∈ [\=\+\s\.\!\?\,\;\:\(\)\[\]\{\}\/\"\“\”\„\±\×\®\°\†\‡\…\~\'\*\·\xA0\%] 
Words with embedded hyphens were stored as a whole and additionally all of their 
fragments (separated by hyphens) were added. All the words W with |W|<9 or |W|>30 
were discarded. Applied to the texts of HagerROM this produced about 260,000 
different words. 

Every word W of the resulting word list WL1 was then fed into our fault-tolerant 

search, while allowing very high values for Smax, Mmax and B. All words of WL1 

where the algorithm generated morphs P' with P'∈WL1 produced the condensed WL2 

with 14,000 different words. To minimize the runtime of the following experiments, 
every third word was chosen, resulting in WL3 with about 4,600 words and an 

average word length of 14 chars. 
So, every search pattern P' of WL3 was part of the original text T and could be 

morphed (with high values for Smax, Mmax and B), so that one or more of its morphs 

are again part of the total word list WL1 – these morphs are called valid target-

morphs. This was done to find out to what extent Smax, Mmax and B can be 

decreased while keeping as many valid target-morphs as possible. The fact that only 
morphs P' with P'∈WL1 were accepted in all the following experiments minimized 

the number of “useless” morphs. During the experiments we determined how many 
valid target morphs P'∈WL1 the algorithm produced for a given parameter set of 

Smax, Mmax and B. 

The weight values for the submorph matrices were manually generated and 
carefully chosen from a linguistic point of view based on our experience with 
different multilingual text corpora (see section  5 for ideas on automatic weight 
generation and optimization). 

Weight values were taken from integer values [1, 2, 5, 10, 15, 20, 25, 30] so that 
not every possible value was chosen, but rather “classes” of weights such as [very-
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helpful, helpful, ..., maybe-dangerous] were used. Other numerical weight ranges are 
possible, but probably won't lead to better results. 

The following three figures present the results of experiments where two 
parameters were kept fixed and the third parameter varied on each test run. 

 

 

Fig. 3. Experiment#1: Mmax variable [1, 2, ..., 5] (fixed: Smax=60, B=200) 

Experiment#1 (see figure  3) led to the conclusion that Mmax (the maximum number 

of applied submorphs on the original pattern) should not get greater than 4, because 
no increase in valid target-morphs was achieved by higher values – only more runtime 
was needed. The fast rise of valid target-morphs was based on the fact that Smax and 

B have quite high values in comparison to the maximum rule weight of 30. 
The abrupt rise of the bar at “1 applied submorph” is due to the fact that for most 

word variants or words with errors only one small change (like insertion, deletion, 
transposition) has to be applied. Karen Kukich in [3] (see page 388) cites Mitton 
(1987) who examined a 170,016-word text corpus and revealed that about 70% of the 
misspelled words contained only a single error. 

 

 

Fig. 4. Experiment#2: Smax variable [0, 1, ..., 40] (fixed: Mmax=2, B=200) 
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Experiment#2 (see figure  4) showed that Smax (the maximum sum of penalty 
weights a morph is allowed to collect) should not be higher than 30, which is at the 
same time the maximum weight used in the weight matrices. The obvious step 
structure of the graph in figure  4 is due to the fact that not every arbitrary weight 
value from the interval [1, 2, ..., 29, 30] was used in the weight matrices (see above). 

 

 

Fig. 5. Experiment#3: B variable [2, 3, ..., 25] (fixed: Mmax=2, Smax=60) 

Finally, Experiment#3 (see figure  5) justifies our decision to always feed only a 
maximum of 20 best rated morphs to the non fault-tolerant search backend. Higher 
values for B may increase the overall runtime but won't improve search results any 
further. Note that the Y-axis of figure  5 was cut-off at a value of 2700 to allow better 
evaluation of the graph. 

To simplify the use of the fault-tolerance feature by the end-user, macro levels 
labeled low, medium and high were established and grouped values for Smax, Mmax 

and B, according to table  2. 

Table  2. Reasonable parameter settings for different fault-tolerance levels 

 low medium high 

  Smax 10 20 30 

  Mmax 2 3 4 

  B 10 15 20 
 
The graphical user interface provides the possibility to select and deselect from the 
list of occurring morphs, to post-filter variants of the original pattern which might be 
of less importance to the user. For example, a fault-tolerant search for kalzium 
produces also morphed hits for kalium and calium (Engl.: potassium), which is a 
different chemical element. The screenshot of figure  6 shows a section of the 
(German) user interface. 
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Fig. 6. HagerROM – Results of a Fault-Tolerant Fulltext Retrieval with WPM 

4   Experiments  

In this section we discuss some experiments regarding the filter efficiency and the 
speed of the presented fault-tolerant approach. Based on the characteristics listed in 
the table below, we used the text corpus of HagerROM for our experiments, because 
the true power of WPM shows most notably on large texts which are a real challenge 
to a text retrieval system. This amount of text (13 times as large as “The Bible”) and 
the vast number of about 600 contributing authors make the WPM based fulltext 
search an important part of the commercial CD-ROM product. Other examples for 
successful application of our WPM approach are the DEJAVU online e-Learning 
system and Prof. Altmeyer's “Springer Enzyklopädie Dermatologie, Allergologie, 
Umweltmedizin” (Springer's Encyclopedia on Dermatology, Allergology and 
Environmental Medicine). For details on DEJAVU (Dermatological Education as 
Joint Accomplishment of Virtual Universities), see [17]. Springer's encyclopedia 
provides free online-access for physicians on [18]. 

Table 3. Characteristics of three products using WPM search 

Module DEJAVU Altmeyer HagerROM 

Text (with Layout) 1.0 MB 22.7 MB 121 MB 

Raw text (w/o Layout) 0.4 MB 5.8 MB 53 MB 

Hexagram trie filter 0.3 MB 1.2 MB 6 MB 

q-gram index 4.3 MB 70.2 MB 450 MB 

 
The following table shows the results of some experiments with fault-tolerant WPM 
searches. The number of actual hits of a search pattern is given within parentheses. 
We also tested patterns that were not part of the original text, but which were 
transformed into valid words after passing the WPM algorithm and so, finally, 
produced hits in the text corpus. 
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Table 4. Experiments with WPM on the HagerROM text corpus 

Original 
pattern 

MT 
sec. 

ST 
sec. 

UT 
sec. 

#M #F #N #H Morphs with hits # w/o 
filter 

azethylsalizyl 
(0) 

0.23 0.12 0.53 1669 1655 14 2 acetylsalizyl(4), 
acetylsalicyl(435) 

15035 

kalzium 
(42) 

0.05 0.01 0.23 343 336 7 5 kalzium(42), 
calcium(3750), 
kalium(2779), 
calium(4), 
cal?cium(3) 

639 

pneumokocken-
polysacharid 
(0) 

0.27 1.19 1.63 2283 2192 91 1 pneumokokken- 
polysaccharid (4) 

129040 

schokolade 
(54) 

0.47 2.05 2.75 1578 1551 27 4 schokolade(54), 
shokolade(1), 
chocolade(1), 
chocolate(4) 

6498 

sulfamethoxy-
diazin 
(2) 

0.33 1.03 1.58 2739 2656 83 3 sulfamethoxydiazin(2), 
sulfametoxydiazin(17), 
sulfametoxidiazin(1) 

24739 

Legend of table  4.MT=morph time: time consumed to calculate the best #N morphs; 
ST=search time: time consumed by the non fault-tolerant search back-end to search for these 
best #N morphs; UT=user time: the total time the user has to wait for all results (with program 
launch time). #M: number of actual generated morphs; #F: number of morphs that did not pass 
the hexagram filter; #N: number of morphs that passed the filter with an acceptable amount of 
penalty weights; #H: number of morphs from the #N that produced at least one hit in the text 
corpus; #w/o filter: without hexagram filtering this number of (mostly useless) different 
morphs would have been generated. 

 
All experiments were performed on a standard PC with AMD Athlon® 1.33GHz CPU 
and 512 MB RAM on a local ATA-66 harddisk under Windows XP®. The 
compressed q-gram index q={1,2,3,4} needs about 450MB storagespace (this is 8 
times |T|) and can be generated on an ordinary Linux computeserver in about one 
hour. 

 
Table  4 demonstrates that on an average PC hardware, fault-tolerant text retrieval 

with practical search patterns can be accomplished using the approach of weighted 
pattern morphing in acceptable time. Within the presented examples the user has to 
wait an average of two seconds to obtain the wanted results. The hexagram trie filter 
prevents the algorithm from generating thousands of morphs that can't be part of the 
text and thus contributes to a faster response of the system. 

From our discussion it is obvious that the filter becomes less accurate with longer 
search patterns. This is due to the fact that the filter can only determine that every six 
character substring of a morph is part of text T. The filter can't determine whether 
these existing six character substrings of the morphed pattern also occur in the same 
order and at the same distances inside text T. 
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5   Conclusion and Future Work  

We demonstrated that nowadays average end-user PCs are capable of performing 
multiple, iterated, exact text retrievals over a set of morphed patterns and thus 
simulate a fault-tolerant search. Morph matrices with penalty weights seem much 
more suitable and flexible to model phonetic similarities and spelling variants in 
multilingual, multi-author texts than the edit distance metric or phonetic codes like 
Soundex and its successors. Weighted pattern morphing can generate edit distance 
like spelling variants (delete or swap letters, insert “?” one-letter wildcards) and the 
algorithm can also put emphasis on phonetic aspects like sound-code based 
algorithms. It thus combines the strength of these two approaches. 

The presented algorithm can be added on top of any exact search engine to create a 
fault-tolerant behavior. A q-gram index fits extremely well as exact non-fuzzy search 
backend, because a “no-hit” result can be detected in short time and wildcards (“?”, 
“*”) are easy to implement without extra time costs. 

 
It will be part of future research to automatically fine-tune the penalty weights in 

order to customize the system to a special text. We are planning to run large test series 
and keep track of how often a submorph produced a valid target-morph. The collected 
data will enable us to fine-tune submorph weights for even better performance. 
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