
S. McDonald and J. Tait (Eds.): ECIR 2004, LNCS 2997, pp. 338–352, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Fault-Tolerant Fulltext Information Retrieval in Digital
Multilingual Encyclopedias with Weighted Pattern

Morphing

Wolfram M. Esser

Chair of Computer Science II, University of Würzburg
Am Hubland, 97074 Würzburg, Germany

esser@informatik.uni-wuerzburg.de
http://www2.informatik.uni-wuerzburg.de

Abstract. This paper introduces a new approach to add fault-tolerance to a
fulltext retrieval system. The weighted pattern morphing technique circumvents
some of the disadvantages of the widely used edit distance measure and can
serve as a front end to almost any fast non fault-tolerant search engine. The
technique enables approximate searches by carefully generating a set of
modified patterns (morphs) from the original user pattern and by searching for
promising members of this set by a non fault-tolerant search backend.
Morphing is done by recursively applying so called submorphs, driven by a
penalty weight matrix. The algorithm can handle phonetic similarities that often
occur in multilingual scientific encyclopedias as well as normal typing errors
such as omission or swapping of letters. We demonstrate the process of filtering
out less promising morphs. We also show how results from approximate search
experiments carried out on a huge encyclopedic text corpus were used to
determine reasonable parameter settings.
A commercial pharmaceutic CD-ROM encyclopedia, a dermatological online
encyclopedia and an online e-Learning system use an implementation of the
presented approach and thus prove its “road capability”.

1 Introduction

One of the main advantages of digitally stored texts is the possibility to easily retrieve
information from their content. In written texts there is always the possibility of errors
and ambiguities concerning their content. Particularly large scientific encyclopedias,
though they may have passed a thorough scrutiny, often use more than one spelling
for the same scientific term.

Publishers of encyclopedias and dictionaries are often confronted with a problem
when a large number of contributing authors produce the text content. These authors
tend to use synonymous notations for the same specific term. This might seem of
minor importance to the user of a printed edition. The user of an electronic version,
however, might be misled by the fact that a retrieval produced results. The user might
have had more results when searching for a different spelling of the search term (e.g.,
different hyphenation, usage of abbreviations, multilingual terms).

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.3
 Für schnelle Web-Anzeige optimieren: Nein
 Piktogramme einbetten: Nein
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [2400 2400] dpi
 Papierformat: [595 842] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 2400 dpi
 Downsampling für Bilder über: 3600 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Abbrechen
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Farbe nicht ändern
 Methode: Standard
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Ja
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Ja
 DSC-Warnungen protokollieren: Nein
 Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja
 EPS-Info von DSC beibehalten: Ja
 OPI-Kommentare beibehalten: Nein
 Dokumentinfo von DSC beibehalten: Ja

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Error
 /ParseDSCComments true
 /DoThumbnails false
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize false
 /ParseDSCCommentsForDocInfo true
 /EmitDSCWarnings false
 /CalGrayProfile ()
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.3
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends true
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo true
 /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /LeaveColorUnchanged
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 300
 /EndPage -1
 /AutoPositionEPSFiles true
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 2400
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 300
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [2400 2400]
>> setpagedevice

Fault-Tolerant Fulltext Information Retrieval in Digital Multilingual Encyclopedias 339

Since 1999 our chair of computer-science has cooperated with Springer-Verlag, a
well-known scientific publishing company, to compile the annual electronic version
of Hagers Handbuch der Pharmazeutischen Praxis (Hager's Handbook of
Pharmaceutic Practice) [1], the standard encyclopedia for German speaking
pharmacists and pharmacologists. The printed version of “Hager's Handbook”
consists of twelve volumes with about 12,300 pages. The first part (five volumes)
describes active substances drawn from plants (herbal drugs), and the second (five
volumes) is about synthetically produced agents (drugs). The two last volumes
contain the manually generated index.

The first electronic version was released as HagerROM 2001 at the end of 2000,

and the current 3rd release was in June 2003 as HagerROM 2003 [2]. To make the
vast amount of Hager's information accessible to the end-user, a fast q-gram based
fulltext retrieval system, which is briefly described in section 2, was built into
HagerROM.

For a better understanding of the decisions we made during the development of the
text retrieval system, some key data regarding HagerROM follows:
– The first edition was published by Mr. Hager in 1876
– 600 contributing authors wrote the current fifth edition (1995–2000) in
– 6,100 separate articles, which led to
– 121 MB of XML tagged text, which, in turn, lead to
– 157 MB of HTML tagged text in
– 16,584 HTML files, which resulted in
– 53 MB raw text T (after removing layout tags) with
– >160 symbol long alphabet ∑ (after lowercasing T)

We soon were confronted with the need for making the text retrieval fault-tolerant,
owing to the following characteristics of Hager: The two expert-generated index
volumes of the print edition list about 111,000 different technical terms drawn
manually from the Hager text corpus. These entries were used in the articles by the
large number of contributing authors and consist of German, Latin and English terms
– making text retrieval a multilingual problem.

For example “Kalzium” (Ger.) has 42 occurrences and “Calcium” (Lat.) has
about 3750 occurrences in text T. So, whatever word variant a user feeds into a non
fault-tolerant search algorithm, not all usages of the technical term will be found.
Additionally spelling and typing errors are a problem in such a large text corpus. For
example the word “Kronblätter” (crown leaves), with about 600 hits, was once
typed wrong as “Kronbläter” and occurs once correctly as a slightly changed
substring of “kronblättrig” (crown petaled). Empirical studies by Kukich [3]
have shown that the percentage of mistakes in texts is not negligible. More precisely,
she found that texts contain 1%–3.3% typing errors and 1.5%–2.5% spelling errors.

This paper is organized as follows: In section 2 we first give an overview of
previous work, describe our non fault-tolerant search backend, and summarize other
existing fault-tolerant approaches. In section 3 we introduce the algorithm of
weighted pattern morphing and provide the rationale for the parameter choices used in
the design of the algorithm. Section 4 then shows the results of some retrieval
experiments we carried out on the text corpus of HagerROM, to give an idea of the

340 W.M. Esser

average running time of the algorithm. Finally, section 5 presents conclusions and
ideas of future work.

2 Previous Research

Fast search algorithms store their knowledge of a text in an appropriate index,
commonly implemented using one of the following data structures (see [4]): suffix
tree, suffix array, qgrams or qsamples (Sometimes authors refer to q-grams and q-
samples as n-grams and n-samples respectively).

2.1 Our Non Fault-Tolerant Search Backend

The non fault-tolerant variant of our search engine uses a compressed q-gram index.
When this index is created, the position (offset from first symbol in T) of every
substring Q with length q inside text T is stored in an appropriate index (see [5] for
details).

As the position of every substring of length q is stored in the index, this leads to
quite large index sizes, which is seen as the main disadvantage of this indexing
technique (see [4], [6]). On the other hand storage space is nowadays often a
negligible factor, and so one can benefit from the enormous retrieval speed q-gram
indices provide.

In the field of fault-tolerant information retrieval, vectors of q-grams are
sometimes used to calculate the spelling distance of two given strings (see Ukkonen's
q-gram distance measure [7]). But as this technique is rather oriented towards
spelling and not towards sound we use weighted pattern morphing (WPM) for
approximate matching. For our approach the q-gram index serves as an
(exchangeable) exact, non-approximate search backend, where other data structures
like suffix tree or a word index would also be feasible. In our case, q-grams are a
good choice, as they are very fast in detecting that a special pattern is not part of the
text: e.g., if any of the q-grams contained in the search pattern is not part of the q-
gram index the algorithm can terminate – there are no occurrences of the pattern
inside the text. This is useful, as many patterns that WPM generates may not be part
of the text.

It is obvious that the size of the above mentioned offset lists is independent of q, as
the position of the Q window always increases by one. Further, with increased values
of q, the average length of the offset lists drops, while the total number of these lists
raises, and so does the required storage space for the managing meta structure for the
index.

To get reasonable retrieval performance, values of q≥3 are mandatory to avoid
processing long offset lists during a search. However, when only an index for q≥i is
generated, search patterns P with |P|<i cannot be found in acceptable time.
Consequently, indices for more than one q are needed, which leads to even more
storage space requirements for the total index structure. (Note: |X| denotes the length
of string X in characters).

Fault-Tolerant Fulltext Information Retrieval in Digital Multilingual Encyclopedias 341

Instead of saving storage space by using q-samples, which are non-overlapping q-
grams (i.e., every hth q-gram, h ≥ q, is stored in the index), we use normal, overlapping
q-grams with q={1,2,3,4}. For an approximate search approach with q-samples
see [6]. But to save space, we skip every 3- and 4-gram Q where at least one character
of Q is not among the f most frequent unograms (i.e., 1-gram) of the text, so called
favorites.

So while the unogram and duogram index is complete, we skip every occurrence
of, for example, 17_°, 7_°C and _°C_ (where '_' denotes 'space'), while we store every
position of, for example, _rat, rats and ats_.

This technique turned out to be extremely flexible for the process of tuning our
search engine to maximum speed by filling up the available storage space (e.g., of the
distributed CD-ROM) with more and more 3- and 4-grams in our index structure.

Though the storage of unograms might seem obsolete, when duograms are present,
unograms are necessary for two reasons: First, retrieval of seldom used symbols like a
Greek 'δ' might be important to the end-user, as even this single symbol carries
enough information content to be interesting. Second, our fault-tolerant add-on (see
section 3) may modify user patterns using '?' wildcards, leaving unograms close to
the borders of the new pattern.

2.2 Common Techniques for Fault-Tolerant Fulltext Retrieval

In 1918 Robert C. Russell obtained a patent for his Soundex algorithm [8], where
every word of a given list was transformed in a phonetic, sound-based code. Using
this Soundex code, U.S. census could look up surnames of citizens rather by sound
instead of spelling, e.g., Shmied and Smith both have the Soundex code S530.
Unfortunately Soundex too often gives the same code for two completely different
words: catherine and cotroneo result in C365 and similar sounding words get different
codes: night=N230 and knight=K523.

Although there have been many improved successors to this technique (e.g., [9]
and [10]), all of them are word based and thus lack the ability to find patterns at
arbitrary positions inside a text (e.g., pattern is substring of a word inside the text).
Further, with sound code based systems it is impossible to rank strings that have the
same code: strings are either similar (same code) or not (different code). Last,
phonetic codes are usually truncated at a special word length, which make them less
usable in texts with long scientific terms.

In [4] a taxonomy for approximate text searching is specified. According to this
taxonomy, three major classes of approaches are known: neighborhood generation,
partitioning into exact search and intermediate partitioning.

Neighborhood generationn generates all patterns P' ∈ Uk(P) that exist in the text,
where editdistance(P, P') ≤ k for a given k (for a description of edit distance see
below). These neighbor patterns are then searched with a normal, exact search
algorithm. This approach works best with suffix trees and suffix arrays but suffers
from the fact that Uk(P) can become quite large for long patterns P and greater values
of k.

Partitioning into exact searchcarefully selects parts of the given pattern that have
to appear unaltered in the text, then searches for these pattern parts with a normal,

342 W.M. Esser

exact search algorithm and finally checks whether the surrounding parts of the text are
close enough to the original pattern parts.

Intermediate partitioning, as the name implies, is located between the other two
approach classes. First, parts of the pattern are extracted, and neighborhood
generation is applied to these small pieces. Because these pieces are much smaller and
may have fewer errors than the whole pattern, their neighborhood is also much
smaller. Then exact searching is performed on the generated pattern pieces and
checked to see whether the surrounding text forms a search hit.

Various approaches have been developed to combine the speed and flexibility of q-
gram indices with fault-tolerance. Owing to the structure of q-gram indices, a direct
neighborhood generation is not possible in reasonable time. Jokinen and Ukkonen
present in [11], how an approximate search with a q-gram index structure can be
realized with partitioning into exact search. Navarro and Baeza-Yates in [5] use the
same basic approach, but assume the error to occur in the pattern, while Jokinen and
Ukkonen presume the error to be in the text, which leads to different algorithms.
Myers demonstrates in [12] an intermediate partitioning approach to the approximate
search problem on a q-gram index.

All the above methods are based on the definition of one of the two string
similarity metrics published by Levenshtein in [13] called Levenshtein distance and
edit distance. Both metrics calculate the distance between two strings by summing up
the minimal costs of transforming one string into the other by counting the atomic
actions insert, delete and substitute of single symbols [14].

Though these metrics provide a mathematically well-defined measure for string
similarities, they also suffer from the inability to model similarity of natural language
fragments satisfactorily, from a human point of view.

With regard to the special characteristics of the Hager text corpus, the use of the
edit distance measure did not seem appropriate. This is mainly due to the fact that the
edit distance processes only single letters (regardless of any context information) and
does not provide the means of preferring a string substitution A→B versus A→C,
where |A|≥1, |B|≥1 and |C|≥1 and |A|, |B| and |C| are arbitrarily different.

For example:
editdistance(“kalzium”, “calcium”)=2 and
editdistance(“kalzium”, “tallium”)=2, are the same – despite the fact that
every human reader would rate the similarity of first two strings much higher than the
similarity of the second pair of strings.

Because the edit distance is more suited to model random typing mistakes or
transmission errors, we needed a way to approximate patterns where the differences
between text and pattern are less “random” but more due to the fact that a great
number of authors may use the same scientific term in different (but correct)
spellings. We also wanted to cope with the problem of non-experts knowing how a
scientific term sounds, without exactly knowing the correct spelling. Our technique of
weighted pattern morphing is described in the next section.

Fault-Tolerant Fulltext Information Retrieval in Digital Multilingual Encyclopedias 343

3 Weighted Pattern Morphing

In this section we present the architecture and algorithms of our fault-tolerant
frontend, which is based on the weighted pattern morphing approach. Afterwards we
show the results of experiments that led to reasonable parameter settings for our fault-
tolerant search engine.

Fig. 1. Workflow of weighted pattern morphing frontend and search backend

3.1 The Fault-Tolerant Search Frontend

As stated at the end of the previous section the edit distance metric, which is used by
most available approximate text retrieval algorithms, is not appropriate, when one is
trying to model a more human-oriented string similarity. Weighted pattern morphing
(WPM) overcomes the mentioned disadvantages with a simple but powerful idea:

Browse searchpattern P for all substrings pi,j (1≤i≤j≤|P|), which are part of a

phoneme group G with G={g1,g2,...,gz} and where pi,j=gk (1≤k≤z) and try to replace

pi,j by all gl (l≠k) which are members of the same phoneme group G. More general as

with the edit distance, here |pi,j| ≥ 1, |gl| ≥ 1 and even |pi,j|≠|gl| is possible. A pattern

P', where at least one substitution took place is called a morph of P and a single
substitution of pi,j to gl is called submorph pi,j→gl.

As the interchangeability of members of the same phoneme group should be
different, the concept of penalty weights was introduced. These penalty weights were
stored in two-dimensional submorph matrices with source strings gk in rows and

destination strings gl in columns (see examples in table 1).

As the table demonstrates, not every possible submorph is allowed, and the matrix
may be asymmetric to the diagonal. There exist submorph tables for every common
phoneme group like “a/ah/aa/ar”, “i/ie/y/ih/ii”, “g/j”, “c/g/k/cc/ck/kk/ch”, and so on.
The possibilities of the edit distance can be approximated by submorphs like ε → ”?”
(insert any char), c∈Σ → ”?” (substitute a char c), c∈Σ→ε (delete), where ε is the

344 W.M. Esser

empty word, Σ the alphabet and “?” is the one-letter wildcard for our search engine.
But even more exotic submorphs like solution → sol., acid → ac., 5
→ five are defined. These are often helpful in a biochemical and medical contexts,
because abbreviations are used inconsistently by different authors (e.g, in HagerROM
the terms “5-petaled” and “five-petaled” occur).

Table 1. Two example penalty weight matrices (phoneme group “cgk...”; numbers)

c g k … 1 one 2 …

c – – 1 … one 1 – – …

g 10 – 10 1 – 1 –

k 1 15 – two – – 1

… … … …

For the German language mixed with Greek and Latin terms we manually

identified about 25 different phoneme groups that lead to about 350 submorphs. The
penalty weights for these string pairs were adjusted manually from a native speaker's
point of view. Automatically adjusting the weights is subject to ongoing research, and
our early results seem quite promising. For generation of English morph matrices we
relied on linguistic research publications like e.g., Mark Rosenfelder's “Hou tu
pranownse Inglish” [15]. Though Rosenfelder presents rules to get from spelling to
sound, we used his work to identify about 35 English sound groups and their possible
spelling which lead to English morph matrices with about 900 submorphs. Additional
submorphs for number names and numbers (100→hundred, hundred→100) and
domain specific abbreviations were added afterwards.

Every morphed pattern P' is recursively fed into the same morph algorithm, to
perform even more submorphs. To avoid recursion loops, the first index imin where

submorphs pi,j→gl may start, is always increased for deeper recursion levels. Loops

otherwise may appear through submorphs at different recursion levels like u→v,
v→w, w→u. On every recursion level, P is also fed unaltered into the next recursion,
with only imin increased, to also allow submorphs only towards the end of the pattern.

Because the recursion tree can get large, the total penalty S, as sum of the penalty
weights for all applied submorphs, and M, the total number of applied submorphs
(=recursion depth), are updated for every recursion call. Recursion backtracking is
performed when either S or M pass configurable limits Smax, Mmax or when imin >

|P|. As Smax, Mmax and imin grow with every recursion level, the algorithm

terminates in reasonable time (see section 4).
Obviously, the above algorithm generates many morphs that are not part of the text

corpus. Though the q-gram algorithm is very fast in finding out that a pattern has no
hits in the text (this is so, because the search always starts with the shortest q-gram
offset list, see [16]), pre-filtering of “useless morphs” was achieved by the
introduction of the hexagram filter.

Fault-Tolerant Fulltext Information Retrieval in Digital Multilingual Encyclopedias 345

This hexagram filter possesses a trie structure with a maximum depth of six, but
does not store actual offsets of hexagrams. It simply indicates whether a specific q-
gram class (q≤6) exists in the text at all.

So when a morph P' is generated, the hexagram trie is traversed for every (2nd
overlapping) hexagram that is part of P'. If any of the morph's hexagrams is not part
of the trie, P' as a whole cannot be part of text T and is discarded. However, if all the
hexagrams of P' are part of the trie, there is no guarantee that P' occurs in T, because
all hexagrams are part of T, though not necessarily in the same order as in P'. In these
cases we rely on the ability of the q-gram algorithm to terminate quickly for those
patterns that are not part of the text.

When checking the q-grams of P' against the trie structure, there are two
parameters that influence the accuracy of the filter: trie depth TD (we used a depth of
six) and window delta WD of the hexagrams drawn from P'. The window delta states
whether every hexagram of P' is taken (delta=1) or every second hexagram (delta=2)
and so on. Smaller values of trie depth and larger values of window delta increase
filter speed but reduce accuracy – and thus result in more promising morph
candidates, which results in longer overall time for the algorithm.

Fig. 2. Operating time for different accuracy levels of the trie filter

So, to obtain reasonable values for these two parameters, we executed fault-
tolerant searches with about 14,000 patterns drawn from the text and recorded the
average running times for different values of trie depth TD and window delta WD.
These experiments were performed on an Intel® Pentium® IV 2.6 GHz processor
with 512MB of RAM, and the results are shown in figure 2. We observed a minimum
running time at TD = 6 and WD = 2, which is the reason why we chose these values
for all subsequent experiments. Though these results seems portable to other Indo-
European languages, it is a topic for future research whether the above values of TD
and WD are appropriate for other text corpora, too.

Every time a submorph is applied, the resulting morph P* (if it has passed the

hexagram filter) is stored in a hashmap, together with SP*, its sum of penalty weights.

When the WPM algorithm terminates, the list of generated morphs is sorted in
ascending order by SP*. The best B morphs (those with least penalty weights) are

346 W.M. Esser

then kept as the final morph list of the original pattern P. The limit B is configurable.
Each triple of values Smax, Mmax and B defines a fault-tolerance level.

3.2 Experiments to Determine Reasonable Parameter Settings

As stated in the previous subsection, the degree of fault-tolerance of the weighted
pattern morphing algorithm can be controlled by 3 parameters:
1. Smaxthe maximum sum of penalty weights a morph may aggregate,

2. Mmaxthe maximum number of submorphs a morph may accumulate, and

3. Bthe number of best rated morphs that is fed into the search backend.

The patterns an end-user presents to the search-engine remain an unknown factor,
therefore we chose the following procedure to gain test patterns for our experiments:
We first split up the whole text T into all of its words. As word delimiter d we chose
(in perl notation):

d ∈ [\=\+\s\.\!\?\,\;\:\(\)\[\]\{\}\/\"\“\”\„\±\×\®\°\†\‡\…\~\'*\·\xA0\%]
Words with embedded hyphens were stored as a whole and additionally all of their
fragments (separated by hyphens) were added. All the words W with |W|<9 or |W|>30
were discarded. Applied to the texts of HagerROM this produced about 260,000
different words.

Every word W of the resulting word list WL1 was then fed into our fault-tolerant

search, while allowing very high values for Smax, Mmax and B. All words of WL1

where the algorithm generated morphs P' with P'∈WL1 produced the condensed WL2

with 14,000 different words. To minimize the runtime of the following experiments,
every third word was chosen, resulting in WL3 with about 4,600 words and an

average word length of 14 chars.
So, every search pattern P' of WL3 was part of the original text T and could be

morphed (with high values for Smax, Mmax and B), so that one or more of its morphs

are again part of the total word list WL1 – these morphs are called valid target-

morphs. This was done to find out to what extent Smax, Mmax and B can be

decreased while keeping as many valid target-morphs as possible. The fact that only
morphs P' with P'∈WL1 were accepted in all the following experiments minimized

the number of “useless” morphs. During the experiments we determined how many
valid target morphs P'∈WL1 the algorithm produced for a given parameter set of

Smax, Mmax and B.

The weight values for the submorph matrices were manually generated and
carefully chosen from a linguistic point of view based on our experience with
different multilingual text corpora (see section 5 for ideas on automatic weight
generation and optimization).

Weight values were taken from integer values [1, 2, 5, 10, 15, 20, 25, 30] so that
not every possible value was chosen, but rather “classes” of weights such as [very-

Fault-Tolerant Fulltext Information Retrieval in Digital Multilingual Encyclopedias 347

helpful, helpful, ..., maybe-dangerous] were used. Other numerical weight ranges are
possible, but probably won't lead to better results.

The following three figures present the results of experiments where two
parameters were kept fixed and the third parameter varied on each test run.

Fig. 3. Experiment#1: Mmax variable [1, 2, ..., 5] (fixed: Smax=60, B=200)

Experiment#1 (see figure 3) led to the conclusion that Mmax (the maximum number

of applied submorphs on the original pattern) should not get greater than 4, because
no increase in valid target-morphs was achieved by higher values – only more runtime
was needed. The fast rise of valid target-morphs was based on the fact that Smax and

B have quite high values in comparison to the maximum rule weight of 30.
The abrupt rise of the bar at “1 applied submorph” is due to the fact that for most

word variants or words with errors only one small change (like insertion, deletion,
transposition) has to be applied. Karen Kukich in [3] (see page 388) cites Mitton
(1987) who examined a 170,016-word text corpus and revealed that about 70% of the
misspelled words contained only a single error.

Fig. 4. Experiment#2: Smax variable [0, 1, ..., 40] (fixed: Mmax=2, B=200)

348 W.M. Esser

Experiment#2 (see figure 4) showed that Smax (the maximum sum of penalty
weights a morph is allowed to collect) should not be higher than 30, which is at the
same time the maximum weight used in the weight matrices. The obvious step
structure of the graph in figure 4 is due to the fact that not every arbitrary weight
value from the interval [1, 2, ..., 29, 30] was used in the weight matrices (see above).

Fig. 5. Experiment#3: B variable [2, 3, ..., 25] (fixed: Mmax=2, Smax=60)

Finally, Experiment#3 (see figure 5) justifies our decision to always feed only a
maximum of 20 best rated morphs to the non fault-tolerant search backend. Higher
values for B may increase the overall runtime but won't improve search results any
further. Note that the Y-axis of figure 5 was cut-off at a value of 2700 to allow better
evaluation of the graph.

To simplify the use of the fault-tolerance feature by the end-user, macro levels
labeled low, medium and high were established and grouped values for Smax, Mmax

and B, according to table 2.

Table 2. Reasonable parameter settings for different fault-tolerance levels

 low medium high

 Smax 10 20 30

 Mmax 2 3 4

 B 10 15 20

The graphical user interface provides the possibility to select and deselect from the
list of occurring morphs, to post-filter variants of the original pattern which might be
of less importance to the user. For example, a fault-tolerant search for kalzium
produces also morphed hits for kalium and calium (Engl.: potassium), which is a
different chemical element. The screenshot of figure 6 shows a section of the
(German) user interface.

Fault-Tolerant Fulltext Information Retrieval in Digital Multilingual Encyclopedias 349

Fig. 6. HagerROM – Results of a Fault-Tolerant Fulltext Retrieval with WPM

4 Experiments

In this section we discuss some experiments regarding the filter efficiency and the
speed of the presented fault-tolerant approach. Based on the characteristics listed in
the table below, we used the text corpus of HagerROM for our experiments, because
the true power of WPM shows most notably on large texts which are a real challenge
to a text retrieval system. This amount of text (13 times as large as “The Bible”) and
the vast number of about 600 contributing authors make the WPM based fulltext
search an important part of the commercial CD-ROM product. Other examples for
successful application of our WPM approach are the DEJAVU online e-Learning
system and Prof. Altmeyer's “Springer Enzyklopädie Dermatologie, Allergologie,
Umweltmedizin” (Springer's Encyclopedia on Dermatology, Allergology and
Environmental Medicine). For details on DEJAVU (Dermatological Education as
Joint Accomplishment of Virtual Universities), see [17]. Springer's encyclopedia
provides free online-access for physicians on [18].

Table 3. Characteristics of three products using WPM search

Module DEJAVU Altmeyer HagerROM

Text (with Layout) 1.0 MB 22.7 MB 121 MB

Raw text (w/o Layout) 0.4 MB 5.8 MB 53 MB

Hexagram trie filter 0.3 MB 1.2 MB 6 MB

q-gram index 4.3 MB 70.2 MB 450 MB

The following table shows the results of some experiments with fault-tolerant WPM
searches. The number of actual hits of a search pattern is given within parentheses.
We also tested patterns that were not part of the original text, but which were
transformed into valid words after passing the WPM algorithm and so, finally,
produced hits in the text corpus.

350 W.M. Esser

Table 4. Experiments with WPM on the HagerROM text corpus

Original
pattern

MT
sec.

ST
sec.

UT
sec.

#M #F #N #H Morphs with hits # w/o
filter

azethylsalizyl
(0)

0.23 0.12 0.53 1669 1655 14 2 acetylsalizyl(4),
acetylsalicyl(435)

15035

kalzium
(42)

0.05 0.01 0.23 343 336 7 5 kalzium(42),
calcium(3750),
kalium(2779),
calium(4),
cal?cium(3)

639

pneumokocken-
polysacharid
(0)

0.27 1.19 1.63 2283 2192 91 1 pneumokokken-
polysaccharid (4)

129040

schokolade
(54)

0.47 2.05 2.75 1578 1551 27 4 schokolade(54),
shokolade(1),
chocolade(1),
chocolate(4)

6498

sulfamethoxy-
diazin
(2)

0.33 1.03 1.58 2739 2656 83 3 sulfamethoxydiazin(2),
sulfametoxydiazin(17),
sulfametoxidiazin(1)

24739

Legend of table 4.MT=morph time: time consumed to calculate the best #N morphs;
ST=search time: time consumed by the non fault-tolerant search back-end to search for these
best #N morphs; UT=user time: the total time the user has to wait for all results (with program
launch time). #M: number of actual generated morphs; #F: number of morphs that did not pass
the hexagram filter; #N: number of morphs that passed the filter with an acceptable amount of
penalty weights; #H: number of morphs from the #N that produced at least one hit in the text
corpus; #w/o filter: without hexagram filtering this number of (mostly useless) different
morphs would have been generated.

All experiments were performed on a standard PC with AMD Athlon® 1.33GHz CPU
and 512 MB RAM on a local ATA-66 harddisk under Windows XP®. The
compressed q-gram index q={1,2,3,4} needs about 450MB storagespace (this is 8
times |T|) and can be generated on an ordinary Linux computeserver in about one
hour.

Table 4 demonstrates that on an average PC hardware, fault-tolerant text retrieval

with practical search patterns can be accomplished using the approach of weighted
pattern morphing in acceptable time. Within the presented examples the user has to
wait an average of two seconds to obtain the wanted results. The hexagram trie filter
prevents the algorithm from generating thousands of morphs that can't be part of the
text and thus contributes to a faster response of the system.

From our discussion it is obvious that the filter becomes less accurate with longer
search patterns. This is due to the fact that the filter can only determine that every six
character substring of a morph is part of text T. The filter can't determine whether
these existing six character substrings of the morphed pattern also occur in the same
order and at the same distances inside text T.

Fault-Tolerant Fulltext Information Retrieval in Digital Multilingual Encyclopedias 351

5 Conclusion and Future Work

We demonstrated that nowadays average end-user PCs are capable of performing
multiple, iterated, exact text retrievals over a set of morphed patterns and thus
simulate a fault-tolerant search. Morph matrices with penalty weights seem much
more suitable and flexible to model phonetic similarities and spelling variants in
multilingual, multi-author texts than the edit distance metric or phonetic codes like
Soundex and its successors. Weighted pattern morphing can generate edit distance
like spelling variants (delete or swap letters, insert “?” one-letter wildcards) and the
algorithm can also put emphasis on phonetic aspects like sound-code based
algorithms. It thus combines the strength of these two approaches.

The presented algorithm can be added on top of any exact search engine to create a
fault-tolerant behavior. A q-gram index fits extremely well as exact non-fuzzy search
backend, because a “no-hit” result can be detected in short time and wildcards (“?”,
“*”) are easy to implement without extra time costs.

It will be part of future research to automatically fine-tune the penalty weights in

order to customize the system to a special text. We are planning to run large test series
and keep track of how often a submorph produced a valid target-morph. The collected
data will enable us to fine-tune submorph weights for even better performance.

References

1. Bruchhausen F.v. et al. (eds.): Hagers Handbuch der Pharmazeutischen Praxis. 10(+2)
Bände. u. Folgebände. Springer Verlag, Heidelberg (1992-2000)

2. Blaschek W., Ebel S., Hackenthal E., Holzgrabe U., Keller K.,Reichling J. (eds.):
HagerROM 2003 - Hagers Handbuch der Drogen und Arzneistoffe. CD-ROM. Springer
Verlag, Heidelberg (2003) http://www.hagerrom.de

3. Kukich K.: Technique for automatically correcting words in text. ACM Computing
Surveys 24(4) (1992) 377-439

4. Navarro G., Baeza-Yates R., Sutinen E., Tarhio J.: Indexing Methods for Approximate
String Matching. IEEE Bulletin of the Technical Committee on Data Engineering, Vol. 24,
No. 4 (2001) 19-27

5. Navarro G., Baeza-Yates R.: A Practical q-Gram Index for Text Retrieval Allowing Errors.
CLEI Electronic Journal, Vol. 1, No. 2 (1998) 1

6. Sutinen E.: Filtration with q-Samples in Approximate String Matching. LNCS 1075,
Springer Verlag (1996) 50-63

7. Ukkonen, E.: Approximate string-matching with q-grams and maximal matches.
Theoretical Computer Science 92 (1992) 191-211

8. Russell R.: INDEX (Soundex Patent). U.S. Patent No. 1,261,167 (1918) 1-4
9. Zobel J., Dart Ph.: Phonetic String Matching: Lessons from Information Retrieval. ACM

Press: SIGIR96 (1996) 166-172
10. Hodge V., Austin J.: An Evaluation of Phonetic Spell Checkers. Dept. of CS, University of

York, U.K. (2001)
11. Jokinen P., Ukkonen E.: Two algorithms for approximate string matching in static texts.

LNCS 520, Springer Verlag (1991) 240-248
12. Myers E.: A sublinear algorithm for approximate keyword searching. Algorithmica,

12(4/5) (1994) 345–374

352 W.M. Esser

13. Levenshtein V.: Binary codes capable of correcting deletions, insertions, and reversals.
Problems in Information Transmission 1 (1965) 8-17

14. Stephen G.: String Searching Algorithms, Lecture Notes Series on Computing, Vol. 3.
World Scientific Publishing (1994)

15. Rosenfelder M.: Hou tu pranownse Inglish http://www.zompist.com/spell.html (2003)
16. Grimm M.: Random Access und Caching für q-Gramm-Suchverfahren. Lehrstuhl für

Informatik II, Universität Würzburg (2001)
17. Projekt DEJAVU: Homepage http://www.projekt-dejavu.de (2003)
18. Altmeyer P., Bacharach-Buhles M.: Springer Enzyklopädie Dermatologie, Allergologie,

Umweltmedizin. Springer-Verlag Berlin Heidelberg (2002)
http://www.galderma.de/anmeldung_enz.html

	Introduction
	Previous Research
	Our Non Fault-Tolerant Search Backend
	Common Techniques for Fault-Tolerant Fulltext Retrieval

	Weighted Pattern Morphing
	The Fault-Tolerant Search Frontend
	Experiments to Determine Reasonable Parameter Settings

	Experiments
	Conclusion and Future Work

